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ABSTRACT

The size and complexity of scientific data are rapidly outpacing our
ability to manage, analyze, visualize, and draw conclusions from
the results. One way to streamline scientific data processing is to
transform the data model to one that is not only more efficient but
that facilitates analytical reasoning. To this end, we are investigating
modeling discrete scientific data by a functional basis representation
based on a tensor product of nonuniform rational B-spline functions
(NURBS). The functional model is an approximation that is more
efficient to communicate, store, and analyze than the original form,
while having geometric and analytic properties making it useful for
further analysis without translating back to the discrete form. This
paper presents four main contributions. The first is modeling in
high dimensions, not just curves or surfaces but volumes and hyper-
volumes. The second is an adaptive algorithm that adds knots and
control points until the maximum error is below a threshold set by
the user. The adaptive algorithm also works in high dimensions. The
third is precise evaluation of values and high-order derivatives any-
where in the domain, again in high-dimensional space. The fourth
contribution is parallelization on high-performance supercomputers.
We evaluate our model using both synthetic and actual scientific
datasets.

1 INTRODUCTION

Scientific discovery through high-performance computing (HPC)
depends on managing, analyzing, and visualizing data. While the
HPC community’s capability to generate more data continues to
grow, the ability to store, transform, and ultimately to draw scientific
conclusions from data is lagging. Rethinking the way that scientific
data are represented is one way to break out of this spiral.

This paper presents initial findings in an ongoing investigation
in redefining discrete scientific data by an alternative representa-
tion. We call Multivariate Functional Approximation (MFA) the
approximation of raw discrete data with a hypervolume of piecewise-
continuous functions. The MFA model can represent numerous
simulations, experiments, analyses, and visualizations. Compared
with existing discrete data models, the MFA model is designed to
enable most spatiotemporal analyses without reverting back to the
original discrete form, usually while occupying less storage space.

In this paper we provide the theory and implementation to model
the MFA. We demonstrate an algorithm for adaptively adding data
to the MFA until a user-set error threshold is achieved. We use the
MFA to compute high-order values and derivatives at any point in the
domain, not limited to the input point locations. We also demonstrate
that our data model and algorithm are easily parallelized on HPC
architectures.
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What makes the MFA unique is that the transformed data retain
geometric properties: spatial and temporal contiguity, derivatives
and statistical distributions are all preserved. The goal of analyzing
scientific data—which are inherently spatiotemporal—is usually to
understand the relationship of science variables to their position in
space and time. This is why once data are modeled in the MFA,
many data analyses and visualizations are possible directly from it.

The maximum error in the MFA approximation is selectable by
the user. Given the maximum error, our modeling algorithm is
automatic, adaptively adding control points as needed in areas of
high error. In this paper we demonstrate the following features of
our model:

• Fitting multivariate spatiotemporal field geometry and science
variable data with a separable dimension algorithm that lowers
computation complexity.

• Progressively improving the quality of the approximation by
locally adding more detail in spatial regions of rapid change
(e.g., edges, turbulence, discontinuities).

• Building a parallel data model based on the MFA that scales
to HPC architectures.

• Evaluating modeling and usage in both synthetic and actual
scientific datasets.

Section 2 summarizes related work in lossy compression, func-
tional data analysis, low-rank approximations, and applications of
functional data representations. Section 3 is a primer on nonuni-
form rational B-spline (NURBS) tensor products. Section 4 explains
how we extended these concepts to high dimensions and adaptively
add control data where the error needs to be reduced. Section 5
demonstrates two key uses of the MFA: evaluating points anywhere
in the domain and evaluating derivatives up to the degree of the
model. Section 6 evaluates our model on synthetic and actual test
data. Section 7 summarizes our work and outlines the next research
topics we intend to pursue.

2 RELATED WORK

Multivariate functional approximation borrows ideas from several
fields: compression, statistics, modeling, visualization, and analysis.
Piecewise functional approximations replace discrete data points
with linear combinations of basis functions and a small number of
reference points called control points. Statisticians call this method
functional data analysis [45, 16], with low-dimensional serial im-
plementations available in popular statistics packages [44].

A key decision in functional data analysis is the choice of basis
function family. Fourier [5], wavelet [21, 25], and geometric (i.e.,
spline) [12] bases are commonly used; recently Austin et al. [1] pro-
posed the Tucker decomposition as a low-rank alternative. Majdis-
ova and Skala proposed radial basis functions for particle data [32].
We use geometric (NURBS) bases for the MFA because they mirror
the space-time properties in the original data and retain these geomet-
ric properties in analytics and visualization. Computing geometric
bases requires minimal memory overhead, and the parallel decompo-
sition of the original space-time domain is identical in the geometric
functional domain, an important consideration for minimizing data
movement at scale.

Compression of floating-point data is one way to reduce data size.
Lindstrom and Isenburg [31] demonstrated lossless floating-point
compression based on predictive coding using the Lorenzo predic-
tor [24]. Laney et al. [28] and Lindstrom [30] demonstrated that valid



scientific conclusions can be drawn even from lossy-compressed
data as well. To date, spline fitting methods in compression algo-
rithms were limited to 1-d curves or 2-d surfaces. For example,
piecewise curve fitting has been used to compress time-series and
other 1-dimensional data [26], with higher dimensions being lin-
earized in a single dimension using space-filling curves. Di and
Cappello also perform curve fitting as the first step in their multi-
stage compressor [14]. Chen et al. modeled flow field pathlines
using quadratic Bezier curves [6]. Unlike compressors, the MFA
retains key geometric properties making it directly usable later. Also,
one could in theory further compress (lossy or lossless) the MFA
using any of the above methods, assuming the total error bounds of
the combination were understood.

Researchers demonstrated that NURBS can faithfully represent
scientific data in up to three dimensions. 2D triangular surfaces and
3D tetrahedral meshes can be converted into bivariate and trivariate
NURBS. Our MFA can be considered as a multivariate extension of
trivariate NURBS to any number of dimensions. Martin and Cohen
first developed the data model and framework in 2001 [34], and Mar-
tin et al. described how to parameterize triangular and tetrahedral
data as tensor products in 2008 [33]. They demonstrated modeling
of exterior surfaces and interior volumes of medical datasets.

Geometric functional representations can replace data models
used today in visualization algorithms. Martin and Cohen de-
rived isosurfacing, slicing, and ray tracing algorithms directly from
NURBS models [34]. Raviv and Elber [46] showed direct rendering
from trivariate B-splines for isosurface extraction, planar slicing, and
volume rendering. Park and Lee [38] visualized trivariate NURBS
for flow data. Hua et al. [22] modeled three-dimensional solids using
simplex splines and showed that visualization algorithms such as
isosurfacing and volume rendering can operate on the same data
model.

Functional data models are used in mechanical and fluid engineer-
ing simulations. One example is isogeometric analysis (IGA) [23]
that uses NURBS models for mechanical simulations. Recently,
a parallel IGA toolkit [9] built on PETSc [2] was developed for
solving high-order partial differential equations over NURBS basis
domains. Spectral methods are another example of a discretization
that uses basis functions to evaluate data: the Nek5000 Navier-
Stokes solver [13] is based on a weighted sum of basis functions
defined over a coarse set of control points.

NURBS modeling is a rich and mature topic in computer-aided
geometric design (CAGD) literature. Lin et al. [29] summarized
numerous approaches to solving for control point positions, weights,
and optionally knots given a set of input points (called reverse en-
gineering). These methods are limited to 3-d geometry of exterior
surfaces. If the knots and spline parameter values are assigned in
advance and the control point weights are uniform, then solving for
the control point positions is accomplished by linear least squares
optimization [4]. This is the approach we take in this paper. One
multivariate example is the work of Turner and Crawford [48] who
apply NURBS to the modeling of high-dimensional multivariate
design spaces. Their application, design space optimization, differs
from scientific data analysis, with a relatively small parameter search
space, serial modeling, and limited downstream processing of the
model.

3 NURBS TENSOR PRODUCT BACKGROUND

NURBS, in addition to being able to model complex data with a
small number of control points, are piecewise-continuous, differen-
tiable, have local support, and are invariant to affine transformations.
To compute the MFA in d dimensions, we use a tensor(d) prod-
uct of NURBS bases in 1-d. We approximate both field geometry
(space-time vertex positions) and science variables (pressure, den-
sity, temperature, etc.) in the same representation. The NURBS
model is efficiently represented by control data consisting of control

Table 1: Nomenclature
Symbol Meaning
x,y,z, t domain coordinates in space-time
d number of domain dimensions (e.g., 4)
QQQ original input data points ∈ Rd+1

u parameter ∈ [0.0,1.0]
w weight associated with a control point, w > 0
p polynomial degree
N set of basis functions
m number of input data points
n number of output control points
PPP set of n (output) control points ∈ Rd+1

U set of n+ p+1 (output) knots ∈ [0.0,1.0]
RRR right side of least squares optimization (NT N)PPP = RRR
emax maximum relative error normalized by data extent
erms RMS relative error normalized by data extent

points and knots. The control points are reference points that “push
and pull” the representation through the linear combination of their
products with the basis functions. The knots are scalars in the range
[0.0,1.0] that map partitions of the data to the control points and
basis functions.

Please refer to Table 1 and Figure 1 for the following overview. A
curve in (x,y) (Figure 1 left) can be parameterized as a vector-valued
function of a single parameter u such that

CCC(u) =
n−1

∑
i=0

Ni,p(u)PPPi. (1)

Ni,p are the p-th degree basis functions, and PPP is the set of n control
points; n, the number of output control points, is usually less than
m, the number of input data points. The definition extends to higher
manifold dimensions (surfaces, volumes, hypervolumes) as a tensor
product of multiple parameters u1,u2, ...,ud . The right panel of Fig-
ure 1 shows a surface, and in general, a d-dimensional hypervolume
in (d +1)-dimensional space is parameterized as follows:

VVV (u1, ...,ud) = ∑
i1
...∑

id
Ni1,p(u1)× ...×Nid ,p(ud)PPPi1,...,id . (2)

The basis functions are rational.

Ni,p(u) =
Bi,p(u)wi

∑
n−1
j=0 B j,p(u)w j

, (3)

where B are the nonrational B-spline basis functions and wi is the
weight associated with each control point. In this paper, we set the
weights to 1.0; however, we do allow a nonuniform set of weights
in our model and account for them when evaluating points from the
MFA.

The basis functions are computed using the recurrence formula
of Cox [8] and De Boor [10]. The recursive computation of Ni,p(u)
requires computing O(p2) nonzero coefficients. The degree p is a
small number, usually between 2 and 8 in our experiments. The
knots U are computed in O(n) time.

The control points PPP are found by solving a linear least-squares
optimization problem (NT N)PPP = RRR, where RRR is computed from
the input data points and basis functions in O(m+ n) time [27].
The matrix of basis functions NT N (in normal form) is n2 in size,
positive definite, and sparse with 2p+1 nonzero entries along the
diagonal [11]. The vector of control points can be solved without
pivoting in O(n3) time. The memory to compute the matrix of basis
functions, NT N, is allocated only once for each new dimension and
reused; memory size does not grow with the number of dimensions.
In future work, we propose representing NT N in a sparse representa-
tion so that its size can be reduced to O(n(2p+1)) from the O(n2)
dense representation that we currently use.
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Figure 1: Left: a spline curve. Right: a tensor product of curves in a
surface.

4 MODELING THE MFA
We continue to use the same nomenclature of Table 1. The user
provides the set QQQ of m input data points, the degree p in each
dimension, and the allowable error emax. We define emax to be the
maximum relative error, which is the maximum error normalized by
the extent of the data range values. Other error metrics are possible
with no loss of generality.

4.1 Input Data
We assume the input data points lie in a tensor product of dimension
d. Figure 2 shows such a domain for d = 2, but our method is not
limited to surfaces; this is only for illustration. The tensor product
requires the number of points in one dimension of the domain to
remain constant while sweeping over the other dimensions. This
requirement is illustrated in Figure 2, with one point indicated by a
red double circle. The inclusion of this point requires the addition
of the other points marked with red circles.

Hierarchical data representations with possibly irregular junctions
between tensor product patches have been published to mitigate the
tensor product space complexity. Forsey and Bartels [17] used
hierarchical refinement to organize patches with different levels of
refinement. T-splines are another way to localize the effect of refined
regions, so named because they allow T-junctions between tensor
product patches. We are studying the work of Sederberg et al. and
Bazilevs et al. [47, 3] to determine whether we can organize our
tensor product patches into more efficient data models.

The tensor product is topologically a high-dimensional rectangu-
lar grid (as opposed to triangular). However, the physical mesh does
not have to be strictly regular, as long as there exists a one-to-one
mapping of physical coordinates (x,y,z, ...) to (u,v,w, ...) parameters.
Typically, complex meshes are first decomposed into rectangular
patches, and suitable parameterizations (mappings from physical
space to parameter space) are computed for each patch. This is a
preprocessing step prior to building the MFA for each patch. The
experiments for this paper assume this step has already been com-
pleted, and we use regular datasets, assuming the entire domain
to be one input patch. The method of Martin et al. [33] converts
tetrahedral unstructured volumes into tensor product patches using
harmonic functions. In the future, we will investigate this and other
methods to preprocess input data.

4.2 Overall Method
Figure 3 illustrates the steps we take to fit the MFA. Beginning with
an initial knot distribution for the minimum number of control points,
we adaptively add control points and knots until all the evaluated
points in each span of knots are within emax of the original points.
Knot spans that are out of tolerance are subdivided, and the MFA is
recomputed. More details are explained below.

Figure 2: A tensor product of input points. The addition of the circled
red point requires the inclusion the other red circles along the dashed
curves.

Initialize parameterization

Set minimum #
control points and knots

Initialize knot distribution

Solve for control point
positions

Check error

All knot spans
within emax?

Subdivide any knot spans out
of tolerance (adding control points)

Done

Figure 3: Overall algorithm design.

4.3 Computing Parameterization and Initial Knot Distri-
bution

The first step is to compute parameter values in the range [0.0,1.0]
for all the input data points. In general, the parameterization problem
is ill-posed for arbitrary input points [43]. Because the input points
in our experiments align with the principal axes, we assigned input
point parameters according to the spacing of input points in each of
the principal domain dimensions.

Knots are the breakpoints in the parameter space between differ-
ent basis functions. The number of knots is n+ p+1 by definition.
In general, the internal knots follow the distribution of the parame-
ters according to the ratio of parameter spans to internal knot spans,
(m− 1)/(n− p). As with the parameters, we store one vector of
knots that is a concatenation of the knots in each dimension, with
the total number of knots being the sum of the number of knots in
each dimension, not their product.

4.4 Choosing the Degree p
We investigate the relationship between p and error convergence rate
with a vanilla input dataset: a 1-d sine function discretized at 1000
points over the domain [−4π,4π]. We vary the number of control
points from 20 to 640 and measure the maximum error in the y direc-
tion between the original input points and the corresponding points
evaluated from the MFA. Figure 4 compares the error when the MFA
is modeled using first through eighth degree basis functions.

On a very smooth function such as sin(x), we can achieve accu-
racy down to 10−14, essentially the limit of double-precision floating



point accuracy. Moreover given a desired error limit, we can trade
off computational complexity (a function of p) and number of con-
trol points. In general, how to determine what degree to use for a
given input dataset is an open question that we intend to study in our
future work. In the present work, we try various degrees for each
dataset and select the degree that gives the best combination of small
size and low error for that dataset.

We can estimate the order of convergence for different values of p
from Figure 4. Since the plot is in log-log scale, the slope of the line
is the convergence order. This slope confirms that the convergence
order is at least p+1, as expected.
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Figure 4: Maximum error of 1-d sine function modeled by an MFA with
varying degrees p.

4.5 Separable Multivariate Fitting
Rather than fitting all the dimensions simultaneously, it is less expen-
sive to decompose the dimensions and fit each dimension separately.
Assume that the number of domain dimensions is d, and the number
of control points is n in each dimension.1 Solving the least-squares
problem in 3-d would take O(n3d) time complexity and O(n2d) space
complexity. By comparison, our separable method takes O(nd+2)
time complexity and O(n2) space complexity.

Our method extends that in Piegl and Tiller [42] for 2-d surfaces
to any number of dimensions in Algorithm 1 and Figure 5. We
approximate the original data in the first dimension to get n control
points. In the second dimension, we use the resulting n control
points from the first dimension as the input data and fit another set of
approximations. This process continues similarly for the following
dimensions.

4.6 Adaptive Knot Insertion
We investigated three different adaptive approaches to adding knots:
a full-dimensional modeling and evaluation, a one-dimensional mod-
eling and evaluation, and a hybrid full-dimensional modeling and
one-dimensional evaluation. The first two approaches produced vi-
able results, while the third method generated an excessive amount
of knots and control points without adapting well to different regions
of the data. The one-dimensional modeling and evaluation method,
while producing a slightly less accurate overall accuracy, runs or-
ders of magnitude faster than the full-dimensional modeling and
evaluation, making it our algorithm of choice and described below.

In one-dimensional knot insertion, we treat the model as a set of
1-d curves instead of a unified high-dimensional space. This 1-d
approximation is only used to estimate where to add knots. After-
wards, we compute one full multivariate model using Algorithm 1
described in Section 4.5.

1Nothing in our method requires the number of control points to be equal
across dimensions; this assumption is for illustration only.
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Figure 5: Iterative fitting over separable dimensions reduces the
complexity with each dimension because the control points from the
previous dimension are the input points to the next dimension.

Algorithm 1 Separable multivariate fitting
1: function MULTIVARIATEFITTING
2: for all d ∈ domain dimensions do
3: NT N← BasisFuns()
4: for all curves in current dimension do
5: if d == 0 then
6: QQQ← curve points from original domain
7: else
8: QQQ← curve points from control points
9: RRR← RHS(QQQ)

10: PPP← solution of NT NPPP = RRR
11: function BASISFUNS
12: for all rows in N do
13: for all knot spans i do
14: Compute Ni,p

15: function RHS
16: m← number of input points in current dimension
17: n← number of control points in current dimension
18: for all j ∈ 1, n do
19: R j = 0
20: for all k ∈ 1, m do
21: R j = R j +N j,p(uk)×Qk

22: return RRR

In Algorithm 2, we iterate over the dimensions of the domain in
line 8. In each dimension, we loop over curves of input points in line
15. To save time, we first only check 2 curves in the dimension, then
4, then 8, and so on. This stepping through curves is controlled by
line 13. We exit this loop when no more knots were found for two
consecutive step sizes. As we fit and evaluate the selected curves,
we check the knot spans in each evaluated curve and add into a set
those spans having at least one domain point that is farther from the
curve than emax. From that set of knot spans, we split those (adding
a new knot) that would contain at least one input domain point in
the new spans. Spans that are too small to contain any input points
are discarded.

4.7 Parallel Data Model

Computation of the MFA is parallelized on three levels. First, block
parallelism is used to decompose the domain into blocks and execute
each block in distributed-memory compute nodes of a supercom-
puter or computing cluster. We use DIY [36] to accomplish block



Algorithm 2 Adaptive fitting
1: function ADAPTIVE
2: while {new knots}← NewKnots() ∧{new knots} 6= /0 do
3: insert {new knots} into knot vector
4: increment number of control points by ||{new knots}||
5: MultivariateFitting()
6: function NEWKNOTS
7: {new knots}← /0
8: for all d ∈ domain dimensions do
9: max nerr← 0

10: NT N← BasisFuns()
11: ncurves← number curves in d direction
12: S← spans to be split in d direction← /0
13: for all step ∈ [ncurves/2,1] by step← step/2 do
14: if ncurves/step < max ncurves then
15: for all curves C ∈ dimension d by step do
16: QQQ← curve points from original domain
17: RRR← RHS(QQQ)
18: PPP← solution of NT NPPP = RRR
19: for all knot spans s ∈C do
20: for all input points d p ∈ s do
21: cp← evaluated point at d p
22: if |d p− cp|> emax then
23: insert s in S
24: break
25:
26: num err← number of domain points in C farther than

emax from C
27: if num err > max nerr then
28: max nerr← num err
29: if max nerr is unchanged then
30: break
31: for all spans s ∈ S do
32: if s can be split then
33: bisect s and insert midpoint knot in {new knots}
34: return {new knots}

parallelism. Within a block, task parallelism is utilized to fit curves
in thread-level tasks. Currently we use TBB [41], but in principle
other task-parallel programming models can be used. The tasks
assign threads to parallelize the MFA computation over different
curves in the same dimension. Those computations are independent,
so they parallelize well. Within a curve, linear algebra operations,
e.g., to invert matrices, are vectorized. Currently we use Eigen [20]
for this purpose.

Each block of the parallel data model is a tensor product defined
by n control points and n+ p+1 knots in each dimension. Control
points are in the same coordinate system as original data points,
meaning that the same spatiotemporal domain decomposition used
for input data can be reused for the MFA, minimizing data movement.
The basis functions are not stored and are recomputed as needed.
The data reduction is primarily governed by the ratio between the
number of input data points to output control points. Assuming the
same reduction in each dimension, the total reduction is exponential
in the number of dimensions.

The output MFA is stored in a binary file in DIY format, which is
read and written in parallel using MPI-I/O. We also wrote a serial
utility to convert the file to VTK format so that the results are
compatible with visualization and analysis tools derived from VTK
such as ParaView and VisIt. (The images of the MFA in Section 6 are
generated by ParaView.) In our future work, we plan to implement
a reader for those tools to read the DIY file in parallel, as well as
modifying VTK filters to operate directly on the MFA. One of the
reasons we chose a NURBS geometric basis for the MFA is because
of its compatibility with such downstream tasks.

5 USING THE MFA

The MFA is designed to be used for subsequent data analysis and
visualization, distinguishing it from other basis representations such
as wavelets, cosine transformations, and compression algorithms that
require the inverse transform to first be applied. Several operations
are possible directly from the MFA without reverting to the original
discrete data model, and moreover they are possible in the full order
and accuracy of the model, without linear interpolation or finite
difference estimation. While the model itself is an approximation
to the original data, subsequent applications of the MFA result in
no further approximation. Once the model is computed according
to Section 4, one can evaluate the model at any point in the domain,
not just at the original input points, and differentiate the model up
to the p− th derivative in any combination of partial derivatives
in the domain dimensions. Affine transformations can be applied
directly to the control points in Equations 1 - 3. In the future, we will
also investigate statistical and machine learning algorithms using the
MFA, such as clustering and principal components analysis.

Today, the MFA is not a drop-in replacement for discrete datasets
in analysis and visualization tools, and algorithms and tools would
need to be modified to ingest the MFA data model. However, we
argue that such effort is justified if it allows data analytics and
visualization to keep pace with exascale computation. Future work
will be needed to demonstrate some of those downstream algorithms
and profile their performance. To date, we can evaluate points and
derivatives anywhere in the domain directly from the MFA, which is
fundamental to many subsequent algorithms. The following sections
explain multivariate evaluation and high-order differentiation.

5.1 Multivariate Evaluation

Figure 6 shows an example of evaluating a 2-d point with p = 2 in
both dimensions. The number of basis functions and control points
multiplied in each dimension is p+1; hence, 9 control points are
shown in image (a). First, each curve in the first (horizontal) dimen-
sion is collapsed into a single point by the matrix multiplication of
basis functions and control points. This step is shown in images
(b) and (c). Next, the 3 resulting points form a curve in the vertical
direction, which is collapsed in (d) through multiplication of basis
functions to become the resulting evaluated point in (e).

(a) (b) (c) (d) (e)

(p+1) x (p+1)
 control

pts.

groups of
(p+1)
pts.

multiply
basis funs.
and add

multiply
basis funs.
and add

group of
(p+1)
pts.

Figure 6: Steps to evaluate a point from the MFA.

We extend this method to any number of dimensions in Algo-
rithm 3. In order to handle arbitrary dimensionality, we convert
what logically is a nested loop structure of p+1 iterations in each
dimension into a flat iteration space of the total product of the nested
iterations. There is some additional bookkeeping not shown in the
pseudocode that determines which basis functions to multiply by
which control point, based on the iteration number in the flattened
iteration space. For example, in lines 8 and 11 of Algorithm 3, the
notation control ptd,i refers to a particular control point in the d-th
dimension based on the i-th iteration.

Algorithm 3 has two main steps. The loop in lines 3-6 computes
the basis functions for the parameter value of the point to be evalu-
ated, and the loop in lines 7-12 multiplies p+1 nonzero coefficients



Algorithm 3 Multivariate evaluation
1: function EVALUATE
2: tot iterations← 1
3: for all d ∈ domain dimensions do
4: Nd ← BasisFuns()
5: tot iterations← tot iterations∗ (pd +1)
6: tempd ← 0.0
7: for all i ∈ tot iterations do
8: temp0← temp0 +N0,i× control pt0,i
9: for all d ∈ domain dimensions do

10: if i mod pd +1 then
11: tempd+1← tempd+1 +Nd+1,i× control ptd+1,i
12: tempd ← 0.0

by control points. The numerical complexity of the two steps is
O(p2) and O(pd), respectively.

5.2 High-order Differentiation

Differentiation, including high-order derivatives, is a staple of sci-
entific data analysis and visualization. Gradient fields, velocities,
Jacobian matrices, edge detection, topological segmentation, and
uncertainty quantification all require first derivatives. Second deriva-
tives are used for computing curvature, acceleration, and Hessian
matrices. For example, ridge and valley features are defined in terms
of gradients and eigenvalues of the Hessian [15]. Applying light-
ing and shading to ridge features requires their normal, or the third
derivative of the original model.

The first p derivatives of a p-degree basis function are computed
with a similar recurrence formula as the basis function values. For
example, the p = 3 basis functions and their first through third
derivatives are shown in Figure 7. With derivatives of basis functions
in hand, MFA derivatives are computed by substituting N with N′ in
Equation 2 to yield Equation 4.

∂ k1+...+kd

∂ k1 u1, ...,∂ kd ud
VVV (u1, ...,ud) =

∑
i1
...∑

id
N(k1)

i1,p (u1)× ...×N(kd)
id ,p (ud)PPPi1,...,id . (4)
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Figure 7: Degree-3 basis functions and derivatives.

Basis functions and their derivatives are not stored in the data
model and are recomputed as needed. Because derivatives of the
MFA use the same knots and control points as the original MFA, we
compute the MFA once using original values and store the model in
a file. Derivatives are computed in postprocessing from the stored
model. This means that we only need to store one MFA irrespective
of how many times we want to evaluate or differentiate it later.
The only requirement is to fit the original MFA with high enough
degree p such that any later derivatives are less than or equal to p in
degree. This includes the sum of partial derivatives in Equation 4,
i.e., k1 + ...+ kd <= p.

Figure 8 demonstrates the use of our MFA to compute the deriva-
tive of the sinc function described in Section 6.1. We modeled an
original set of 100 input points with 20 control points using p = 5.
The evaluated values of the MFA appear in the taller black curve
of Figure 8. Subsequently, we differentiated the MFA where the y
coordinate is the first derivative of the MFA. This is the shorter red
curve. It is easy to visually confirm that the slope of the black curve
corresponds to the value of the red curve.
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Figure 8: 1-d sinc function in black (taller curve) and its first derivative
in red (shorter curve) illustrate point evaluation and differentiation from
an existing MFA.

6 EXPERIMENTAL RESULTS

We performed two sets of experiments. In the first, we test the
adaptive fitting by automatically adding knots and control points
until a desired error threshold is reached. In the second, we test
parallel scalability for a fixed number of control points.

The first set of experiments was conducted on a laptop with an
Intel 2.7 GHz Core i7 CPU with 4 hardware cores and 8 threads. It
contains 16 GB of DDR3 RAM and a 500 GB SSD. Our code was
compiled with LLVM version 9.0.0 (Clang version 900.0.38) with
-O3 optimization.

The second set of experiments was conducted on the Theta super-
computer at the Argonne Leadership Computing Facility of Argonne
National Laboratory. Theta is a Cray XC40 machine with 4,392
nodes. Each node has one Intel Xeon Phi Knights Landing 64-core
CPU, 16 GB high-bandwidth MCDRAM, 192 GB DDR4 RAM, and
128 GB of SSD storage. Theta is interconnected with a Cray Aries
3-level Dragonfly network, and the machine has a peak aggregate
compute rate of 11.7 PFLOPs. We used the Intel compiler with -O3
optimization.

6.1 Synthetic Data
Sinc is a synthetic dataset of the cardinal sine function, y = sin(x)/x,
that we can generate in any dimensionality and resolution. In order to
increase the range and slope of the data, we scaled the sinc function
by a factor of 10. The 1-d sinc function is f (x) = 10sin(x)/x. In
2-d, f (x,y) = 10sinc(x)sinc(y), and so forth for higher dimensions.
Figure 9 shows a 2-d sinc function. The sinc function was chosen
for its smoothness; because of its high degree of continuity, the MFA



Figure 9: Top: Adaptive grid of 784 control points for 2-d sinc function
with desired emax = 1×10−4. Bottom: Original input data colored by
error compared with reconstructed data.

is able to model such data efficiently using high degree (we used
p = 5). In essence, this experiment shows the best-case behavior.

Table 2 shows our adaptive fitting algorithm (Algorithm 2) on a
4-d sinc function. We varied emax and measured the output number
of control points, resulting error, number of iterations, and mod-
eling time. Because our algorithm estimates knot insertion in a
low-dimensional space, the actual value of emax does not always
match the desired value, but the actual error is always within the
same order of magnitude or better. The tradeoff is speed: adaptively
modeling 100 million data points can be achieved in approximately
one minute on a single-node machine. The time is related to the
number of refinement iterations needed to achieve the desired ac-
curacy and generally increases with lower error bound, while the
number of control points generally increases. Although we are using
normalized maximum error as our error control, Table 2 also reports
the normalized RMS error for reference. The RMS error is one to
two orders of magnitude less than maximum error.

Table 2: 4-d Sinc Dataset w/ 108 Input Points
Desired
emax

Output
Ctrl Pts

Cmpr
Fctr

Actual
emax

Actual
erms

Iters Time
(s)

10−2 2.9×104 3499 3.9×10−2 5.7×10−4 4 35.0
10−3 1.9×105 514 5.2×10−4 6.2×10−6 5 37.9
10−4 5.3×105 188 8.5×10−5 2.7×10−6 8 87.9
10−5 1.9×106 53 3.9×10−6 4.5×10−8 6 60.0

6.2 Scientific Data
In the following experiments, we continue to use the adaptive fitting
method described in Section 4.6 and Algorithm 2. Unlike the sinc
data, these datasets are ill-conditioned, with sharp edges and high-
frequency details, and are representative of actual data one would
encounter in scientific experiments or simulations.

6.2.1 3-d Combustion Datset
S3D is a turbulent combustion data set generated by an S3D simula-
tion [7] of fuel jet combustion in the presence of an external cross-

flow [19, 18, 40, 39]. The domain is 3-d (x,y,z) (704×540×550),
and the range variable f (x,y,z) is the magnitude of the 3-d velocity.
We slice this dataset to produce 1-d, and 2-d cross-sections, in addi-
tion to using it in its original 3-d form.2 We used p = 3 for modeling
the S3D dataset.

Figure 10 shows the progress of the adaptive fitting algorithm as
the error rate converges to the user-specified limit. This test uses
the 2-d S3D dataset, with p = 3, and emax = 10−2. The starting
error after the first iteration is 8.3×10−1, and the ending error after
11 iterations is 1.5×10−1. The progress is nonlinear; the first few
iterations reduce the error slowly, but the middle iterations reduce
the error steadily until the error reaches a minimum at iteration 9 and
does not reduce further. We continue to work making the adaptive
algorithm more accurate as well as accelerating its convergence.
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Figure 10: Convergence of maximum relative error to the desired
threshold as a function of the number of iterations of the adaptive
fitting algorithm. 2-d S3D dataset with emax = 10−2. Plotted in semilog
scale.

For the same experiment, the top image in Figure 11 shows the
resulting control points. Notice how the adaptive algorithm clustered
control points in the turbulent regions of high velocity gradient. The
relatively flat regions in the dataset are modeled with a more coarse
resolution of control points.

Table 3 shows adaptive fitting of the 3-d S3D dataset. We varied
emax and measured the output number of control points, resulting
error, number of iterations, and modeling time. In this case, our
adaptive algorithm does not achieve the desired emax error. The RMS
error is two orders of magnitude better, indicating that the areas of
worst fit are localized to a small region, as evident in Figure 11.

Setting a smaller error bound does not always require more it-
erations and longer time. As we see in this result and in the next
two datasets, sometimes a tighter error tolerance can be attained
by adding more knots in earlier iterations, making the adaptive
algorithm converge sooner.

Table 3: 3-d S3D Dataset w/ 2.1×108 Input Points
Desired
emax

Output
Ctrl Pts

Cmpr
Fctr

Actual
emax

Actual
erms

Iters Time
(s)

10−1 4.2×104 5025 4.0×10−1 7.5×10−3 18 479
10−2 1.8×106 117 2.5×10−1 2.1×10−3 16 197

6.2.2 3-d Thermal Hydraulics Dataset
The next case study is a 3-d vector field representing the numerical
results of a large-eddy simulation of Navier-Stokes equations for the

2Our use of the terms 1-d, 2-d, or 3-d is the number of dimensions in
the domain only, not the domain plus the range, which would include the
function value or science variables.



Figure 11: Top: Adaptive grid of 18,476 control points for 2-d S3D
data with desired emax = 1×10−2. Bottom: Original input data colored
by actual emax.

MAX experiment [35] conducted at Argonne National Laboratory
in 2010. The problem is representative of turbulent mixing and
thermal striping that occurs in the upper plenum of liquid sodium
fast reactors. The dataset is courtesy of Aleksandr Obabko and Paul
Fischer of Argonne National Laboratory and is generated by the
Nek5000 solver. The data have been resampled from their original
topology onto a 200×200×200 regular grid, and the magnitude of
the velocity vector is associated with each 3-d domain point.

Table 4 shows adaptive fitting with p = 3. Accuracy is similar
to the S3D data, but the compression factor is minimal. Figure 12
shows a volume rendering of reconstructed data from Nek5000.

Table 4: 3-d Nek5000 Dataset w/ 8.0×106 Input Points
Desired
emax

Output
Ctrl Pts

Cmpr
Fctr

Actual
emax

Actual
erms

Iters Time
(s)

10−1 1.1×106 7.6 2.3×10−1 1.7×10−2 12 49.3
10−2 8.0×106 1.0 8.8×10−2 7.6×10−4 8 22.7

Figure 12: Volume rendering of data evaluated from the MFA modeled
with desired emax = 10−2.

6.2.3 2-d Climate Dataset
The Community Earth System Model (CESM) is global climate
data of the Earth’s oceans, atmosphere, land, and sea ice. The
dataset we modeled is the FLDSC (Clearsky downwelling long-
wave flux at surface) variable of the Community Atmosphere Model
(CAM) developed at the National Center for Atmospheric Research
(NCAR) [37]. Our dataset is an 1800×3600 2-d domain with one
value of the FLDSC science variable at each grid point.

Table 5 shows adaptive fitting with p = 3. Figure 13 shows
the superposition of CESM control points, input data points, and
evaluated points.

Table 5: 2-d CESM Dataset w/ 6.5×106 Input Points
Desired
emax

Output
Ctrl Pts

Cmpr
Fctr

Actual
emax

Actual
erms

Iters Time
(s)

10−2 9.0×104 71 3.3×10−1 6.1×10−2 20 1806
10−3 1.7×106 3.8 3.0×10−2 4.8×10−4 12 1653

Figure 13: CESM input dataset. Height is velocity magnitude at
horizontal grid locations. Adaptive control points, input data points,
and evaluated points from the MFA are superimposed.

6.3 Discussion
Although we report compression factor in our results, we do not
attempt to compete head-to-head with lossy compression algorithms
such as those listed in the related work. In fact, readers familiar with
that literature will immediately see that our results are worse; the
reason being that unlike wavelets or other lossy compressors, the
MFA is a transformed data model that retains geometric properties
and enables analytical operations directly without decompressing.
Section V shows some of these operations by evaluating points
and derivatives (up to degree p) analytically from the model at any
location. The tradeoff in this transformation is that the rate distortion
curve (the relationship between data size and error) for nonsmooth,
noisy data such as Nek5000, S3D, and CESM is worse for the MFA
than for lossy compressors that encode every data point along with
the residual error. Rather than adjusting the number of bits used to
encode all the data points, we attempt to achieve the user-specified
error rate by automatically selecting the number and location of
control points with our adaptive knot insertion algorithm.

6.4 Parallel Scalability
We return to the synthetic sinc dataset. Solely for the purpose of
illustration, Figure 14 shows a 2-d surface decomposed into 36
blocks, with each block modeled in parallel in a separate MFA. In
the next experiment, we used a 3-d volume rather than a 2-d surface,
with a large number of input points, decomposed into many blocks,
executing over thousands of MPI processes. The experiment was
conducted on the Theta supercomputer at the Argonne Leadership
Computing Facility.

We conducted both strong and weak scalability tests. In these
tests, we fixed the number of control points at 1/5 the number of



Figure 14: 2-d sinc synthetic dataset partitioned into 36 blocks and
modeled in parallel, blocks colored by process ID.

input points and did not adapt control points with respect to a user
error bound. For strong scaling, the total number of input points
and total number of output control points remains constant as MPI
processes are added. We used 10003 input points and 2003 output
control points for a compression factor of 53 = 125. In weak scaling,
both the number of input points and the number of control points
per MPI process remain constant. We used 2003 input points per
block and 403 output control points per block in the weak scaling
test. The largest test in the weak scaling regime had over 32 billion
input points.
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Figure 15: Strong and weak scaling.

Thus far, both the strong and weak scaling results in Figure 15 are
nearly 100% efficient. This is because the MFA has local support,
and its geometric properties mimic the locality of the original data;
i.e., no communication is needed. There is a section of superlinear
speedup in the strong scaling curve between 512 and 1024 processes
that we are investigating. The results so far show that the problem is
parallelizable, and we are optimistic that there is headroom for some
communication overhead and load imbalance while maintaining
good scalability, although this is yet to be proved.

We are currently studying to what extent to overlap information
between blocks in the parallel decomposition. With no overlap (the
current result), all errors, including at block boundaries, are within
emax, but continuity is not enforced across block boundaries. This
means that the multiblock parallel and single-block serial results
are within emax of each other, but not identical. This may be ac-
ceptable, but if tighter continuity is required across blocks, we are
working to determine how much information to exchange across
blocks and how to constrain the fitting inside a block by the neigh-
boring blocks. We also need to measure parallel performance over
a broad range of datasets—real and synthetic—with different load
balance characteristics.

7 CONCLUSION

In this paper, we developed the basics of modeling the MFA in
high-dimensional space, with adaptive refinement, in parallel. We
further implemented high-dimensional functions to evaluate points
and high-order derivatives anywhere in the domain. This capabil-
ity will allow comparing two models that originated from different
discretizations. Applications include not only comparative analy-
sis but also multiphysics model coupling. Another application is
nonuniform spatial smoothing by increasing the degree of fit and/or
reducing the number of knots and control points.

NURBS models have some well-known limitations, and we are
pursuing multiple research directions to overcome them. One prob-
lem is accurate modeling of noisy, high-frequency data. Section 6.2
showed that accuracy and compression for scientific data are worse
than state-of-the-art floating-point lossy compression algorithms.
Moreover, the largest errors occurred in regions of steepest gradient
in the input data. To that end, we are experimenting with various
approaches to assigning nonuniform weights to control points using
both linear and nonlinear optimization methods. We also continue
to investigate different algorithms for adaptively adding control
points—including increasing knot multiplicity at adaptive segment
boundaries—and to study the resulting local and global error.

Our research in block parallelization is ongoing. We intend to al-
low various degrees of user-specified continuity at block boundaries,
and we are actively studying the problem from two directions: im-
posing additional constraints during the modeling in order to satisfy
the desired level of interblock continuity, and developing blending
methods that satisfy continuity during the evaluation of points from
independently fitted blocks. Another consideration is selecting an
appropriate domain decomposition to preserve data features and/or
balance computational load. In our parallel data model, the degree p
can vary between blocks, motivating automatic selection of p.

Another limitation of tensor products is their space complexity
with increasing dimensionality. Because tensor products require the
number of control points in one dimension to remain constant when
sweeping over the other dimensions, inserting a knot in one dimen-
sion results in hyperplanes (in the parameter space) of additional
control points. In addition to investigating T-splines and other data
organization methods to allay this problem, we are also working
to fit separate NURBS models for the field geometry and for each
science variable. In addition to lowering the dimensionality of the
models, data size can be further reduced because in many cases
the field geometry requires fewer control points than the science
variables.

Continued application to more datasets is another ongoing activity.
We will investigate unstructured, adaptive refinement, and particle
data, both simulation and experimental. We will include more error
metrics such as peak signal-to-noise ratio in addition to maximum
and RMS error. With improved adaptive fitting algorithms and
nonuniform weights, we will be able to compare head-to-head with
compression algorithms from the literature. In terms of downstream
uses of the MFA, we will modify visualization algorithms to directly
ingest the model, including writing custom plugins for ParaView or
VisIt to directly evaluate the MFA representation. Furthermore, we
will experiment with the MFA for machine learning tasks such as
computing statistics, clustering, or principal components analysis.
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